A Glimpse of Topological Interlocking Configurations

Reptiles (M.C. Escher) http://wp.calmagrafica.es/wp-content/uploads/2010/05/mosaico-lagartos.gif

Hello!

I am Andres Bejarano

Interested in Computer Graphics, Geometry and Algorithms and Theory

Currently working on interlocking configurations advised by professor **Christoph Hoffmann**

Previous Work

1.

A semester ago in a glunch, not too far away

Interlocking configurations with polyominoes

 A PSPACE-hard problem (intractable).
 Only possible if we use hexominoes or higher degree polyominoes.
 Non-monotone pieces are required.

Sidharth Dhawan, Zachary Abel. Complexity of Interlocking Polyominoes. 17 December 2011. arXiv:1112.4087. http://arxiv.org/abs/1112.4087

Greeks were right!

Greek Key Pattern http://int-galleries.com/vector/greek-key-pattern-vector.php

Assemblable interlocking polyominoes

Some examples!

Some examples!

Some examples!

But...

Is it truly interlocking?

If the configuration is assemblable then we loss interlocking (at least in the key piece in the opposite assembly direction).

Can we expand to 3D?

Yes, the same principles can be applied to polycubes.

Has someone worked on this before?

Yes, and it has been an active field for some enthusiasts and researchers as well.

Interlocked bunny in history

Printing 3D Objects With Interlocking Parts [Song 2015]

Recursive Interlocking Puzzles [Song 2012]

Making Burr Puzzles From 3D Model [Xin 2011]

3D Polyomino Puzzle [Lo 2009]

2. Topological Interlocking

Interlocking as you might have never imagined

Trivia 🕫

Can we build an interlocking structure using people, all of them with the same pose? (using hands is not allowed)

A Lap Circle!

http://www.aplayfulpath.com/wp-content/uploads/2014/03/play_laps.jp

Topological Interlocking is a structural organization for which the building blocks are locked in their positions by purely geometrical constraints. [Dyskin 2003]

How does it work?

We need support

Assembly in rigid frame and concentrated force loading [Dyskin 2003]

Topological interlocking history

 Principle known since 1699 by Joseph Abeille
 Brought back to life by Michael Glickman in 1984
 Concept enhanced by Arcady Dyskin since 2001

Abeille ashlar barrel vault transformation [Fallacara 2006]

Let's build one!

Loopsided Planes of the Square [Kanel-Belov 2008]

Platonic solids work!

Even the bigger ones!

Interlocking Dodecahedra and Icosahedra [Kanel-Belov 2008]

Hexagonal Tiling of the Plane [Kanel-Belov 2008]

Why it works?

Planar Sections and Evolution [Dyskin 2003]

Advantages

Geometry

Repetitive Elements Simple Connections Small Elements

ΤI

Construction

Single Material Mortar Free Prefabricated Self Aligning Reuse

Structure

Seismic Resistant Damage Tolerant

Possible Advantages of Employing Topological Interlocking in Building Construction [Weizmann 2016]

Crack retardation

Mechanism of crack retardation [Dyskin 2003]

In short...

It's all about geometry

No connectors at all! Structure holds itself together by the contact between faces.

Convex pieces are useful

It is possible to have 3D interlocking configurations using convex shapes. Of course, a support structure is required.

Start with a tessellation or tiling

A tessellated/tiled surface with even-sided pieces works as starting point for generating a topological interlocking configuration.

Romans were right!

Colosseum Amphitheatre, Rome, Italy http://wallpaperswide.com/colosseum_amphitheatre_rome_italy-wallpapers.html

compassion of

Incas were right too!

Walls of the Sacsayhuaman ruin at Cusco. By Bcasterline at English Wikipedia [Public domain], via Wikimedia Commons https://upload.wikimedia.org/wikipedia/commons/a/a8/Walls_at_Sacsayhuaman.jpg

3. Current Approach

Let's get creative for a moment

Let's try a bit harder

Multiple interlocking within between two modules constraint the edges of the assembly [Tessmann 2012]

We have in mind...

Using only convex shapes

It seems to be more interesting if the topological interlocking configuration is based only (when possible) on such shapes.

Least number of different pieces

Let's try to be uniform with the building blocks (when possible).

Build closed surfaces

Given a mesh, how can we build a topological interlocking configuration of it?

Let's work with a cylinder

Have a cylinder
Apply a chessboard texture
Mark the arrows
Place the planes
Make the cuts
Is that easy?

Cylinder Prototype I

- Based on curved
 - faces
- Requires boolean
 operations using
 current pieces and
 conic segments
 Four different pieces

Cylinder Prototype II

 Based on tetrahedral shapes
 Requires simpler calculations
 Two different pieces

Ideas and Future Work

4.

Going beyond what we know

There are some ideas to follow

Irregular Surface Tessellations

Any non-regular tessellation based on even-faced shapes can be used.

Topological Interlocking Sphere

How does it work for a sphere?

https://openclipart.org/image/2400px/svg_to_png/254937/chessboard-sphere-1.png

Topological Interlocking In Architectural Design [Weizmann 2015]

There are some ideas to follow

Reducing Support Structure

- Required during the building process
- 2) Required for a stable state after building

Topological Interlocked Bunny Let's add another one to the collection!

Global Conformal Parameterization - Holomorphic 1-Form [Gu, Zeng 2003]

http://vcl.cs.dartmouth.edu/news/2015/2/19/assembling-self-supporting-structures

Thanks!

Any questions?

You can find me at:

@andresbeja87

abejara@purdue.edu

https://www.cs.purdue.edu/homes/abejara/

- Special thanks to all the people who made and released these **awesome resources** for free:
 - Presentation template by <u>SlidesCarnival</u>
 - Photographs by <u>Unsplash</u>

PSPACE

 The set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.
 P=PSPACE?

